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A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range
from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement
extends the energy range of our previous observation and increases its precision. The new results show, for
the first time, that above ∼200 GeV the positron fraction no longer exhibits an increase with energy.

DOI: 10.1103/PhysRevLett.113.121101 PACS numbers: 96.50.sb, 95.35.+d, 95.85.Ry, 98.70.Sa

Over the last two decades, there has been a strong
interest in the cosmic ray positron fraction in both particle
physics and astrophysics [1]. The positron fraction is
defined as the ratio of the positron flux to the combined
flux of positrons and electrons. The first results from the
Alpha Magnetic Spectrometer (AMS) on the positron
fraction were reported in [2]. They generated widespread
interest [3]. In this Letter, we report new results based on all
the data collected during 30 months of AMS operations on
the International Space Station (ISS), from 19 May 2011 to
26 November 2013. Because of the excellent and steady

performance of the detector, and an increase of the data
sample by a factor of 1.7, the measurement of the positron
fraction is extended up to 500 GeV with improved
precision.
AMS detector.—The layout of the AMS-02 detector [4]

is shown in Fig. 1. It consists of nine planes of precision
silicon tracker with two outer planes, 1 and 9, and the inner
tracker, planes 2 to 8 [5]; a transition radiation detector
(TRD) [6]; four planes of time of flight (TOF) counters [7];
a permanent magnet [8]; an array of anticoincidence
counters (ACC) [9], inside the magnet bore; a ring imaging
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Čerenkov detector (RICH) [10]; and an electromagnetic
calorimeter (ECAL) [11]. The figure also shows a high
energy positron of 369 GeV recorded by AMS. AMS
operates without interruption on the ISS and is monitored
continuously from the ground.
The timing, location, and attitude of AMS are deter-

mined by a combination of global positioning system units
affixed to AMS and to the ISS. The AMS coordinate
system is concentric with the center of the magnet. The
x axis is parallel to the main component of the magnetic
field and the z axis points vertically. The (y-z) plane is
the bending plane. The maximum detectable rigidity over
tracker planes 1 to 9, a lever arm of 3 m, is ∼2 TV.
Detector performance, described in detail in [2,4], is steady
over time.
Three main detectors provide clean and redundant

identification of positrons and electrons with independent
suppression of the proton background. These are the TRD
(above the magnet), the ECAL (below the magnet), and
the tracker. The TRD and the ECAL are separated by the

magnet and the tracker. This ensures that most of the
secondary particles produced in the TRD and in the upper
TOF planes are swept away and do not enter into the
ECAL. Events with large angle scattering are also rejected
by a quality cut on the measurement of the trajectory using
the tracker. The matching of the ECAL energy, E, and the
momentum measured with the tracker, p, greatly improves
the proton rejection.
To differentiate between e! and protons in the TRD,

signals from the 20 layers of proportional tubes are
combined in a TRD estimator formed from the ratio of
the log-likelihood probability of the e! hypothesis to that
of the proton hypothesis in each layer. The proton rejection
power of the TRD estimator at 90% e! efficiency measured
on orbit is 103 to 104 [2].
To cleanly identify electrons and positrons in the ECAL,

an estimator, based on a boosted decision tree algorithm
[12], is constructed using the 3D shower shape in the
ECAL. The proton rejection power of the ECAL estimator
reaches 104 when combined with the energy-momentum
matching requirement E=p > 0.75 [2].
The entire detector has been extensively calibrated in a

test beam at CERN with eþ and e− from 10 to 290 GeV=c,
with protons at 180 and 400 GeV=c, and with π! from 10
to 180 GeV=c which produce transition radiation equiv-
alent to protons up to 1.2 TeV=c. In total, measurements
with 18 different energies and particles at 2000 positions
were performed [2].
Data sample and analysis procedure.—Over 41 billion

events have been analyzed following the general procedure
presented in [2]. Optimization of all reconstruction algo-
rithms was performed using the test beam data. Several
corrections are applied to the data to ensure long term
stability of the absolute scales in the constantly varying on-
orbit environment. These corrections are performed using
specific samples of particles, predominantly protons. They
include off-line calibrations of the amplitude response of
TRD, TOF, tracker, and ECAL electronic channels. These
calibrations are performed every 1=4 of an orbit with the
exception of the alignment of the outer tracker planes 1 and
9 which is performed every two minutes. The stability of
the electronics response is ensured by onboard calibrations
of all channels every half-orbit (∼46 min). The corrections
also include the alignment of all the AMS detectors and the
temperature correction of the magnetic field strength.
Monte Carlo simulated events are produced using a

dedicated program developed by AMS based on GEANT-
4.9.4 [13]. This program simulates electromagnetic and
hadronic interactions of particles in the materials of AMS
and generates detector responses. The digitization of the
signals, including those of the trigger, is simulated accord-
ing to the measured characteristics of the electronics. The
digitized signals then undergo the same reconstruction as
used for the data. The Monte Carlo samples used in the

FIG. 1 (color). A 369 GeV positron event as measured by the
AMS detector on the ISS in the bending (y-z) plane. Tracker
planes 1 to 9 measure the particle charge, sign, and momentum.
The TRD identifies the particle as e!. The TOF measures the
absolute charge value to be one and ensures that the particle is
downward going. The RICH independently measures the charge
and velocity. The ECAL measures the 3D shower profile,
independently identifies the particle as an e!, and measures its
energy. A positron is identified by (1) positive rigidity in the
tracker, (2) an e! signal in the TRD, (3) an e! signal in the
ECAL, and (4) the matching of the ECAL shower energy and axis
with the momentum measured with the tracker and magnet. Note:
the 3D ECAL has nine superlayers along the z axis with fibers in
alternating directions. In the (y-z) plane the wider rectangles
display the width of the shower in five superlayers and the
narrower rectangles display the energy deposition per layer in the
other four alternating superlayers. The shower axis is defined
from the 3D shower shape.
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present analysis have sufficient statistics such that they do
not contribute to the errors.
Events are selected by requiring a track in the TRD and

in the tracker, a cluster of hits in the ECAL, and a measured
velocity β ∼ 1 in the TOF consistent with a downward-
going jZj ¼ 1 particle. To reject the bulk of the remaining
protons, an energy-dependent cut on the ECAL estimator
is applied. To reject secondary positrons and electrons
produced by the interaction of primary cosmic rays with
the atmosphere [14], the energy measured with the ECAL
is required to exceed, by a factor of 1.2, the maximum
Størmer cutoff [15] for either a positron or electron at the
geomagnetic location where the particle was detected and
at any angle within the acceptance.
The resulting acceptance for electrons and positrons is

identical and nearly constant over the range from 3 to
500 GeV. It takes into account the geometric acceptance,
the selection efficiency, and the trigger efficiency. Any
charge asymmetry in the azimuthal angular acceptance,
present only below 3 GeV, is accounted for in the
systematic errors. The integrated acceptance for positrons
and electrons is the same within our statistics and cancels
in the fraction.
The positron fraction is determined in energy bins as

measured with the ECAL. The set of bins used in our
previous publication is extended, consistent with the energy
resolution and available statistics. Migration of the signal
events to neighboring bins has a negligible contribution to
the systematic errors.
Compared to our previous publication [2], systematic

errors have decreased with increasing statistics in the
high energy region. As other uncertainties have decreased,
the contribution of the absolute energy scale uncertainty
became noticeable. The energy scale is verified by using
minimum ionizing particles and the ratio E=p. These
results are compared with the test beam values where
the beam energy is known to high precision. This com-
parison limits the uncertainty of the absolute energy scale
to 2% in the range covered by the beam test results,
10–290 GeV. It increases to 5% at 0.5 GeV and to 3% at
500 GeV. This results in a negligible contribution to the
total systematic error, except below 5 GeV, where it
dominates.
In each energy bin, the two-dimensional reference spectra

for e! and the background are fit to data in the [TRD
estimator–logðE=pÞ] plane by varying the normalizations of
the signal and the background. This method provides a data-
driven control of the dominant systematic uncertainties by
combining the redundant and independent TRD, ECAL, and
tracker information. The reference spectra are determined
from high statistics electron and proton data samples selected
using tracker and ECAL information including charge sign,
track-shower axis matching, and the ECAL estimator. The
purity of each reference spectrum is verified using
Monte Carlo simulation.

The fit is performed simultaneously for the positive and
negative rigidity data samples in each energy bin yielding
the number of positrons, the number of electrons, the
number of protons, and the amount of charge confusion,
where charge confusion is defined as the fraction of
electrons or positrons reconstructed with a wrong charge
sign. Charge confusion is discussed further below.
From the bin-by-bin fits, the sample contains 10.9 × 106

primary positrons and electrons and 3.50 × 106 protons.
A total of 0.64 × 106 events are identified as positrons.
There are several systematic uncertainties. In addition

to the energy scale, bin-to-bin migration, and asymmetric
acceptance of eþ and e− below 3 GeV discussed above,
there are also the systematic uncertainties from event
selection, charge confusion, and the reference spectra.
To evaluate the systematic uncertainty related to event

selection, the complete analysis is repeated in every energy
bin over 1000 times with different cut values, such that the
selection efficiency varies up to 30%. The distribution of
the positron fraction resulting from these 1000 analyses
contains both statistical and systematic effects. The differ-
ence between the width of this distribution from data and
from Monte Carlo simulation quantifies this systematic
uncertainty.
Two sources of charge confusion dominate. The first

source is related to the finite resolution of the tracker and
multiple scattering. It is mitigated by the E=pmatching and
quality cuts of the trajectory measurement including the
track χ2, charge measured in the tracker, and charge
measured in the TOF. The second source is related to
the production of secondary tracks along the path of the
primary e! in the tracker. It was studied using control data
samples of electron events where the ionization in the lower
TOF counters corresponds to at least two traversing
particles. Both sources of charge confusion are found to
be well reproduced by the Monte Carlo simulation and their
reference spectra are derived from the Monte Carlo sim-
ulation. The systematic uncertainties due to these two
effects are obtained by varying the background normal-
izations within the statistical limits and comparing the
results with the Monte Carlo simulation. They were
examined in each energy bin.
The proton contamination in the region populated by

positrons is small. It is accurately measured using the TRD
estimator. The amount of proton contamination has a
negligible contribution to the statistical error.
The systematic error associated with the uncertainty of

the data derived reference spectra arises from their finite
statistics. It is measured by varying the shape of the
reference spectra within the statistical uncertainties. Its
contribution to the overall error is small compared to the
statistical uncertainty of data and is included in the total
systematic error.
Results and conclusions.—The measured positron frac-

tion is presented in Table I as a function of the energy at the
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TABLE I. Positron fraction as a function of energy. The number of positrons, Neþ , is corrected for charge confusion. Errors due to:
statistical error (stat.), acceptance asymmetry (acc.), event selection (sel.), energy scale and bin-to-bin migration (mig.), reference
spectra (ref.), charge confusion (c.c.), and total systematic error (syst.).

Energy [GeV] Neþ Fraction σstat: σacc: σsel: σmig: σref: σc:c: σsyst:

0.50–0.65 1242 0.0943 0.0027 0.0009 0.0034 0.0023 0.0003 0.0009 0.0043
0.65–0.81 5295 0.0917 0.0015 0.0008 0.0024 0.0020 0.0002 0.0008 0.0033
0.81–1.00 10 664 0.0862 0.0008 0.0007 0.0014 0.0018 0.0002 0.0007 0.0025
1.00–1.21 14 757 0.0820 0.0007 0.0006 0.0009 0.0016 0.0002 0.0006 0.0020
1.21–1.45 22 199 0.0775 0.0005 0.0005 0.0008 0.0014 0.0001 0.0005 0.0018
1.45–1.70 27 145 0.0724 0.0005 0.0004 0.0007 0.0013 0.0001 0.0004 0.0016
1.70–1.97 33 041 0.0686 0.0004 0.0003 0.0006 0.0011 0.0001 0.0003 0.0014
1.97–2.28 39 475 0.0650 0.0003 0.0002 0.0006 0.0010 0.0001 0.0003 0.0012
2.28–2.60 36 067 0.0622 0.0004 0.0002 0.0005 0.0008 0.0001 0.0002 0.0010
2.60–2.94 35 442 0.0597 0.0003 0.0001 0.0004 0.0007 0.0001 0.0002 0.0009
2.94–3.30 34 977 0.0576 0.0003 0.0001 0.0003 0.0006 0.0001 0.0002 0.0008
3.30–3.70 31 762 0.0559 0.0003 0.0001 0.0003 0.0006 0.0001 0.0002 0.0007
3.70–4.11 33 051 0.0553 0.0003 0.0001 0.0002 0.0005 0.0001 0.0002 0.0006
4.11–4.54 30 310 0.0539 0.0003 0.0001 0.0001 0.0004 0.0001 0.0002 0.0005
4.54–5.00 29 764 0.0528 0.0003 0.0001 0.0001 0.0003 0.0001 0.0002 0.0004
5.00–5.50 27 688 0.0524 0.0003 0.0001 0.0001 0.0003 0.0001 0.0002 0.0004
5.50–6.00 23 488 0.0515 0.0003 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003
6.00–6.56 22 113 0.0514 0.0003 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003
6.56–7.16 20 863 0.0511 0.0004 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003
7.16–7.80 18 033 0.0506 0.0004 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003
7.80–8.50 15 719 0.0509 0.0004 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003
8.50–9.21 13 389 0.0514 0.0004 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003
9.21–9.95 12 245 0.0513 0.0005 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003
09.95–10.73 10 641 0.0523 0.0005 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003
10.73–11.54 9504 0.0532 0.0006 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003
11.54–12.39 7846 0.0546 0.0006 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003
12.39–13.27 7646 0.0553 0.0006 0.0001 0.0001 0.0002 0.0001 0.0002 0.0003
13.27–14.19 6457 0.0552 0.0007 0.0001 0.0001 0.0002 0.0001 0.0002 0.0004
14.19–15.15 5704 0.0558 0.0007 0.0001 0.0001 0.0002 0.0001 0.0002 0.0004
15.15–16.15 5419 0.0570 0.0008 0.0001 0.0001 0.0003 0.0001 0.0002 0.0004
16.15–17.18 4689 0.0585 0.0009 0.0001 0.0001 0.0003 0.0001 0.0002 0.0004
17.18–18.25 4016 0.0601 0.0010 0.0001 0.0001 0.0003 0.0001 0.0002 0.0004
18.25–19.37 3906 0.0596 0.0010 0.0001 0.0001 0.0003 0.0001 0.0002 0.0004
19.37–20.54 3777 0.0625 0.0010 0.0001 0.0001 0.0003 0.0001 0.0002 0.0004
20.54–21.76 3244 0.0617 0.0011 0.0001 0.0001 0.0004 0.0001 0.0002 0.0005
21.76–23.07 2910 0.0640 0.0012 0.0001 0.0001 0.0004 0.0001 0.0002 0.0005
23.07–24.45 2813 0.0655 0.0013 0.0001 0.0002 0.0004 0.0001 0.0002 0.0005
24.45–25.87 2631 0.0652 0.0013 0.0001 0.0002 0.0004 0.0001 0.0002 0.0005
25.87–27.34 2397 0.0662 0.0014 0.0001 0.0002 0.0004 0.0001 0.0002 0.0005
27.34–28.87 2325 0.0704 0.0015 0.0001 0.0002 0.0005 0.0001 0.0002 0.0006
28.87–30.45 2040 0.0717 0.0016 0.0001 0.0002 0.0005 0.0001 0.0002 0.0006
30.45–32.10 1706 0.0719 0.0018 0.0001 0.0003 0.0005 0.0001 0.0002 0.0006
32.10–33.80 1530 0.0721 0.0019 0.0001 0.0003 0.0005 0.0001 0.0002 0.0006
33.80–35.57 1496 0.0766 0.0021 0.0001 0.0003 0.0005 0.0001 0.0002 0.0007
35.57–37.40 1327 0.0732 0.0021 0.0001 0.0003 0.0005 0.0001 0.0002 0.0007
37.40–40.00 1607 0.0781 0.0020 0.0001 0.0004 0.0006 0.0001 0.0002 0.0007
40.00–43.39 1616 0.0806 0.0021 0.0001 0.0004 0.0006 0.0001 0.0002 0.0008
43.39–47.01 1401 0.0872 0.0024 0.0001 0.0005 0.0006 0.0001 0.0003 0.0008
47.01–50.87 1116 0.0840 0.0027 0.0002 0.0005 0.0006 0.0001 0.0003 0.0009
50.87–54.98 1041 0.0887 0.0028 0.0002 0.0006 0.0007 0.0001 0.0003 0.0010
54.98–59.36 837 0.0921 0.0032 0.0002 0.0007 0.0007 0.0001 0.0004 0.0010
59.36–64.03 710 0.0933 0.0037 0.0002 0.0007 0.0007 0.0001 0.0004 0.0011
64.03–69.00 644 0.0974 0.0039 0.0002 0.0008 0.0007 0.0002 0.0005 0.0012
69.00–74.30 606 0.1069 0.0044 0.0002 0.0009 0.0007 0.0002 0.0006 0.0013

(Table continued)
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top of the AMS detector. The contribution of individual
sources to the systematic error are added in quadrature to
arrive at the total systematic uncertainty.
Most importantly, several independent analyses were

performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in this Letter.
Figure 2 shows the behavior of the positron fraction at

low energies, from 1 to 35 GeV. As seen, below ∼8 GeV,
the positron fraction decreases rapidly as expected from the
diffuse production of positrons [16]. Then the fraction
begins to increase steadily with energy. The AMS data
provide accurate information on the minimum of the
positron fraction.
Our earlier result [2], in which we observed the increase

of the positron fraction with decreasing slope above
20 GeV, is consistent with this new measurement. The
increase of the positron fraction has been reported by earlier
experiments: TS93 [17], Wizard/CAPRICE [18], HEAT
[19], AMS-01 [20], PAMELA [21], and Fermi-LAT [22].
The new result extends the energy range to 500 GeVand

is based on a significant increase in the statistics by a factor
of 1.7. Figure 3 explores the behavior of the positron
fraction at high energies (> 10 GeV) and compares it with
earlier measurements. We observe that above ∼200 GeV
the positron fraction is no longer increasing with energy.
To examine the energy dependence of the positron

fraction quantitatively in a model independent way, straight
line fits were performed over the entire energy range with a
sliding energy window, where the width of the window
varies with energy to have sufficient sensitivity to the slope.
Each window covers about eight bins, at energies above
200 GeV it covers three bins. The variation of the slope of
the positron fraction from 4 GeV upwards is shown in
Fig. 4(a). As seen in the figure, above 30 GeV the slope
decreases logarithmically with energy. Fitting the change
of the slope as a function of energy above 30 GeV with
a two parameter fit [slope ¼ c logðE=E0Þ where c is the

normalization and E0 is the energy at which the slope
crosses zero, that is, the energy at which the positron
fraction reaches its maximum] results in a determination of
E0 ¼ 275! 32 GeV with a χ2=d:f: ¼ 3.9=12 taking into
account correlations. The result of the fit is shown as a solid
line in Fig. 4(a). This confirms our observation from Fig. 3
that above ∼200 GeV the positron fraction is no longer
increasing with energy. The exact value of E0, which is an
important parameter in understanding the physics of the
positron fraction [3], will be determined accurately with
more data and by extending the energy range.
This is the first experimental evidence of the existence of

a new behavior of the positron fraction at high energy.
We present a fit to the data of a minimal model, described

in our previous Letter [2]. In this model the eþ and e−

fluxes are parametrized as the sum of its individual diffuse
power law spectrum and a common source term with an
exponential cutoff parameter, Es

Φeþ ¼ CeþE−γeþ þ CsE−γse−E=Es ; ð1Þ
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FIG. 2 (color). The positron fraction from 1 to 35 GeV. It shows
a rapid decrease from 1 to ∼8 GeV followed by a steady increase.
The AMS data provide accurate information on the minimum of
the positron fraction.

TABLE I. (Continued).

Energy [GeV] Neþ Fraction σstat: σacc: σsel: σmig: σref: σc:c: σsyst:

74.30–80.00 450 0.0963 0.0047 0.0002 0.0010 0.0007 0.0002 0.0006 0.0014
80.00–86.00 381 0.1034 0.0056 0.0002 0.0011 0.0007 0.0002 0.0007 0.0015
86.00–92.50 398 0.1207 0.0063 0.0002 0.0011 0.0007 0.0003 0.0009 0.0016
92.50–100.0 358 0.1169 0.0063 0.0002 0.0013 0.0007 0.0003 0.0010 0.0018
100.0–115.1 524 0.1205 0.0054 0.0002 0.0014 0.0007 0.0004 0.0013 0.0021
115.1–132.1 365 0.1110 0.0062 0.0002 0.0017 0.0007 0.0005 0.0018 0.0026
132.1–151.5 271 0.1327 0.0083 0.0002 0.0020 0.0007 0.0006 0.0024 0.0032
151.5–173.5 228 0.1374 0.0097 0.0002 0.0023 0.0007 0.0007 0.0031 0.0040
173.5–206.0 225 0.1521 0.0109 0.0002 0.0027 0.0007 0.0008 0.0044 0.0053
206.0–260.0 178 0.1550 0.0124 0.0003 0.0034 0.0007 0.0011 0.0076 0.0084
260.0–350.0 135 0.1590 0.0168 0.0003 0.0045 0.0007 0.0015 0.0123 0.0132
350.0–500.0 72 0.1471 0.0278 0.0003 0.0064 0.0007 0.0022 0.0182 0.0194
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Φe− ¼ Ce−E−γe− þ CsE−γse−E=Es ; ð2Þ

(with E in GeV). A fit of this model to the data with their
total errors (the quadratic sum of the statistical and
systematic errors) in the energy range from 1 to
500 GeV yields a χ2=d:f: ¼ 36.4=58 and the cutoff
parameter 1=Es ¼ 1.84! 0.58 TeV−1 with the other
parameters having similar values to those in [2],
Ceþ=Ce− ¼ 0.091! 0.001, Cs=Ce− ¼ 0.0061! 0.0009,
γe− − γeþ ¼ −0.56! 0.03, and γe− − γs ¼ 0.72! 0.04.
(The same model with no exponential cutoff parameter,
i.e., 1=Es set to 0, is excluded at the 99.9% C.L. when fit to
the data.) The resulting fit is shown in Fig. 4(b) as a solid
curve together with the 68% C.L. range of the fit param-
eters. No fine structures are observed in the data. In our
previous Letter, we reported that solar modulation has no
observable effect on our measured positron fraction, and
this continues to be the case.
An analysis of the arrival directions of positrons and

electrons was presented in [2]. The same analysis was
performed including the additional data. The positron to
electron ratio remains consistent with isotropy; the upper
limit on the amplitude of the dipole anisotropy is δ ≤ 0.030
at the 95% C. L. for energies above 16 GeV.
Following the publication of our first Letter [2], there

have been many interesting interpretations [3] with two
popular classes. In the first, the excess of eþ comes from
pulsars. In this case, after flattening out with energy, the
positron fraction will begin to slowly decrease and a dipole
anisotropy should be observed. In the second, the shape of
the positron fraction is due to dark matter collisions. In this
case, after flattening out, the fraction will decrease rapidly
with energy due to the finite and specific mass of the dark
matter particle, and no dipole anisotropy will be observed.
Over its lifetime, AMS will reach a dipole anisotropy
sensitivity of δ≃ 0.01 at the 95% C.L.

The new measurement shows a previously unobserved
behavior of the positron fraction. The origin of this
behavior can only be ascertained by continuing to collect
data up to the TeV region and by measuring the antiproton
to proton ratio to high energies. These are among the main
goals of AMS.
In conclusion, the 10.9 × 106 primary positron and

electron events collected by AMS on the ISS show that,
above ∼200 GeV, the positron fraction no longer exhibits
an increase with energy. This is a major change in the
behavior of the positron fraction.
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